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Abstract. In extending the work done by Wigner in a 1963 paper, we introduce the Poincari 
group representations of functions defined on the space of complex spinors. We give a 
geometrical interpretation of the spinor space for both the massive and massless cases. In 
the massive case we get a six-dimensional manifold, with three compact dimensions. In 
the massless case we get a four-dimensional manifold, with one compact dimension. 

1. Introduction 

In 1939 Wigner found the elementary building blocks of any quantum mechanics 
consistent with the PoincarC group (inhomogeneous, proper orthochronous Lorentz 
group) [ 11. These building blocks are the irreducible unitary representations of the 
covering group of this group, which are related to elementary particles. The usual 
description of elementary particles is in terms of vector fields or spinor fields [2]. The 
connection between such fields and the irreducible representations was studied by 
several authors for particular cases [3]. This connection is not one to one; in particular, 
non-scalar tachyons and mass-zero particles of infinite spin ((0,s) irreducible rep- 
resentations, see below) cannot be described by tensor fields or spinor fields in 
Minkowski space [3,4]. 

In 1963 Wigner wrote a paper on the connection between the irreducible representa- 
tions and wavefunctions describing the elementary particles [ 51. His discussion was 
limited to particles of integer spin, but it applied to massive particles, mass-zero 
particles [ 6 ]  and particles of imaginary mass (tachyons). The description was in terms 
of complex-valued functions of two translationally invariant 4-vectors p (linear momen- 
tum) and q. These vectors are subject to the invariant constraints: p 2 ,  q2  and p -  q 
fixed. Among the nice features of this approach to the integer spin representations of 
the Lorentz group is the intuitive geometrical interpretation that one can give to the 
action of the group itself on these representations in terms of the manifold described 
by p and q. 

$ Supported in part by the National Science Foundation. 
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In the massive case the action of the group is represented geometrically by the 
five-dimensional manifold H x S’ where H is the mass hyperboloid and the Lorentz 
group acts on the momentum variable p .  The action of the little group on the variable 
q determines the spin of the representation, this motion being on the 2-sphere (we 
explain this further in the following). 

In the massless case the mass hyperboloid is replaced by the light cone and the 
2-sphere by a cylinder, with axis along p .  Unitarity forces us to gauge out the translations 
along the surface of the cylinder, so that the manifold on which the Hilbert space is 
defined is actually the light cone with a circle at each point. We have a four-dimensional 
manifold. 

In the present paper we extend Wigner’s 1963 paper to half-integer spin. A 
straightforward extrapolation would lead one to expect complex-valued wavefunctions 
depending on a 4-vector p and on a spinor. We find, however, that the optimal 
description involves functions of two complex 2-spinors. 

In the massive and imaginary mass case we consider functions f( v, 6, f j ,  ,$) of two 
complex 2-spinors (and their complex conjugates). In the massless case we consider 
functions f (  7, f j )  of just one spinor. A geometrical interpretation of the spinor space 
is given for both the massive and massless case and it is compared to the geometrical 
interpetation of the integer spin representations given by Wigner. We find that the 
massive case only requires a higher-dimensional space: a six-dimensional manifold. 
The approach through the spinor space is very natural and quite simple in the massless 
case. 

In reviewing the integer spin massive case, we have slightly modified one of the 
constraints used by Wigner in a way that facilitates the calculations without losing 
contact with Wigner’s theory. An analogous constraint can be used in the half-integer 
spin massive case, yielding an invariant differential equation for the half-integer spin 
particles. 

The paper is organised as follows. In § 2 we introduce our spinor notation. In 0 3 
we consider the massive case. We first review Wigner’s theory for the integer spin 
representations in terms of functions of p and q. Making the modifications just cited 
then enables us to easily derive the carrier spaces of the irreducible representations of 
the PoincarC group. We then consider in § 3.2 the half-integer representations on the 
functions on spinor space. In § 4 we consider the massless case. Here also we review 
Wigner’s construction and then include the half-integer spin representations. In 0 5 
we discuss the case of imaginary mass. Finally in § 6 we give our conclusions. 

2. Notation 

Let v A ,  for A = 1,2, be a two-component spinor [3, 71; namely, for A E SL(2, C ) :  

q* -* V I A  = AAeqB. (2.1) 

The complex conjugate of 7 A  is f j A ,  which transforms as 

(2.2) 
f j A +  j j i A  - - A A B ? . ¶  

We raise and lower indices using the 2 x 2 antisymmetric matrix E :  
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and adopt the following conventions: 
- A -  - BA 

- B  

7 ) A  = q B E B A  7) - 7 ) B E  

i j A = E A B 7 7  . B 
7)A = &AB?/ 

Note that 

A'EA = E 

(2.4) 

(2.5) 

from which it follows that, if q A  transforms according to A, f j A  transforms according 
to A, v,., to A'-' and f j ~  to At-'. 

Furthermore we have that 

(7 5) 7 7 A ~ A = ~ A B ~ - 1 C A ~ B 5 c  (2.7) 

is a Lorentz scalar. 
Let us define the quantity 

77 5 U A B  (2.8) - A  B 

where U stands for the vectorial notation of the Pauli matrices up, g = 0 , 1 , 2 , 3  with 
indices ( u + ) A ~ .  

We have that qat transforms as a 4-vector under the Lorentz group. Moreover, 
using the identity 

( U + ) A B ( u p ) C D  = 2EACEBD (2.9) 

fj(T5' Euy = 2 ( 6  * f j ) ( ( *  7). (2.10) 

we obtain the Fierz transformation: 

By abuse of notation, the dot product in (2.10) is between 4-vectors on the left-hand 
side, with metric gpv  and between spinors on the right-hand side, with metric EAB or 
EAB.  In fact, one can always write a 4-vector index as a pair of spinorial indices, one 
dotted and one undotted, and find [7] the following correspondences: 

(2.11) 

E + l p 2 w 3 + 4 C ,  ti(&A,A4&A,A3&A,A3EA2A, - EA,A3EA2A4&A,A,EA2A3). (2.12) 
g+ Y - &A B E A  B 

Throughout the paper we shall denote 4-vectors by use of italic letters and 3-vectors 
by use of boldface letters. 

3. Massive case 

3.1. Integer spin 

We briefly review the technique used by Wigner to describe the integer spin representa- 
tions of the Lorentz group. 

The carrier space is the space of complex-valued functions f ( p,  q )  depending on 
the momentum p and on another translationally invariant 4-vector q, satisfying the 
following constraints: 

( P 2  - m2)f( P,  4 )  = 0 (3.1) 

P' 4 f ( P ,  4 ) = 0  (3.2) 

q 2 f ( p ,  9) = - f ( p ,  4 ) .  (3.3') 
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We find it more convenient, instead of (3.3’), to use the following equation: 

as we shall now justify. 
Equation (3.3) means that in the rest frame of p ,  where p = (m, 0, 0, 0), f( p ,  q )  

satisfies the Laplace equation Af( p ,  q )  = 0. Instead of functions on the sphere q2  = +l  
in the rest frame [5], we have here solutions of Laplace’s equation. If we put in the 
extra condition that we wish the solution to Laplace’s equation to be regular at the 
origin q =0, then there is a one-to-one mapping between the solution to Laplace’s 
equation and the spherical functions. This shows that the two constrains (3.3) and 
(3.3’) are interchangeable. We adopt (3.3) since it simplifies the solution of the 
eigenvalue problem for W 2  (see below). 

The Lorentz group acts on the space of such functions by transforming, in the 
usual way, the two 4-vectors p and q. The invariant inner product (f; g )  is given by 

r 

In order to find the spin content of the representation, we calculate the Pauli- 
Lubanski 4-vector W :  

where 

(3.8) 

Thus, using (3.3) we have 

w”, 4 )  = -m2S(S+ l ) f ( P ,  4 ) .  (3 .9)  
The solutions in the rest frame are then polynomials in q, which satisfy Laplace’s 

equation, as we explained above. This implies, in particular, traceless conditions on 
the tensors involved. 

For a general p we can write the polynomial solutions for given eigenvalues of S 
straightforwardly: 

s=o f ( P ,  4 )  = f ( p )  

S = l  f ( P ,  4 )  = f ( p ) q @  f , ( P ) P P  = o  
s = 2  f ( P ,  9 )  = f , ” ( P ) 4 ’ 1 4 y  f , ” ( P ) P ”  = 0 f,” (PI = 0 etc. 

Because of the one-to-one correspondence between the functions on the sphere 
and the solutions to Laplace’s equation regular at the origin, the inner products of 
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these functions are given by the integral over the unit sphere in the rest frame of p .  
For general p this translates to 

(3.10) 

3.2. Including half-integer spin 

Wigner's analysis left open the case of the double-valued representations of the Lorentz 
group. To include them we consider complex-valued functions Q of two spinors 7, 6 
and their complex conjugates 7j, f subject to the following constraints: 

7 . ( = m  

f j . E = m .  
- 

From (3.11) and (2.10) follows 

We therefore regard as 4-momentum the vector: 

(3.11) 

(3.12) 

(3.13) 

The easiest form for the spinors 7 and t, in the rest frame, p = (m, 0, 0, O), due to the 
constraint (3.11),  is 

E = ( ; )  J;;;. 

Using such spinors we obtain the tetrad: 

L L 

- f f f 7  = m(0,  0, 1 , O ) .  
2i 

+ b7 = m ( 0 ,  1, 0,O) 
2 

(3.14) 

(3.15) 

We define the PoincarC groupt action on q~, corresponding to a translation by a and 
a SL(2, C )  transformation A, by 

(3.16) 

We introduce the scalar product: 

W)=I drldiidtdfS(T'E-"ij .  f - m ) Q ( 7 7 , E , ? , f ) ~ ( 7 7 , E , j j , f )  (3.17) 

and consider the Hilbert space of functions Q such that 

(Q, cp)<m. 

t By Poincare group in the following we actually mean the covering group of the Poincare group. 
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Manifestly the representation U defined by (3.16) is a unitary representation of the 
Poincark group on this space. 

In order to classify the representation we calculate the invariant operator W 2 .  We 
calculate it in the rest frame p = (m, 0, 0,O). 

The generators Si of rotations are given by 

(3.18) 

Notice that the generators Si are skew-Hermitian, as expected, since we work with 
a unitary representation. It follows that, in the rest frame, the three non-vanishing 
components of the Pauli-Lubanski 4-vector W are 

(3.19) 

The calculation of W 2  follows from (3.19) straightforwardly, but the large number 
of terms that one gets does not suggest an easy interpretation of the differential operators 
which appear in W 2  nor a simple way of determining the eigenfunctions of W 2 .  A 
better way of approaching the problem is to pass from the space of functions of 77, f j ,  
5, 5 to one in which p appears explicitly as an independent variable. We notice that, 
because of (3.13), the following Dirac-type equations hold: 

(3.20) 

This means that f and f j  are, for a given p ,  not independent of 5 and q :  for a fixed 
p, one only has a function of two spinors, subject to the constraints (3.11)T. 

We can therefore make the following change of variables: 

779 fj,5, I +  P I  P, c (3.21) 

where 7 and 5 remain unchanged: 

T ' P  5 =  e. (3.22) 
p (  7,5, f j ,  f )  is given by (3.13) and the inverse transformations f j (  p, p, e ) ,  $( p, p, 5) are 
given by (3.20). 

The Jacobian of this coordinate transformation is easily evaluated and we get 

Hence the real measure on the space of 77, 5, f j ,  f can be expressed as follows: 

d77 dfj d 5  d.$6(7 5 -  m)6( f j  * f -  m )  

(3.23) 

(3.24) 

where we have used the fact that p 2 =  (77 * 5 )  ( f j  . I), from (3.12). 

the mass hyperboloid: 
Notice that by combining the two 6 functions we obtain the invariant measure on 

d4p6( p 2  - m 2 )  - d'p/2p0. 

t If z is the complex number z = zo + iz, , zo ,  zI E R, z is considered to be independent of 2 just like z, is 
independent of zI, namely in a real structure (we always count real parameters, the measures are real, etc). 
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The remaining part contains four formally real variables linked by one constraint. We 
get therefore a total of six parameters, one more than the number of parameters used 
by Wigner in the construction of the integer spin representations. The extra parameter- 
needed in order to build the half-integer spin representations-is due to the fact that, 
in constructing a fixed 4-vector out of two spinors and their complex conjugates, we 
can always change the spinors by a phase leaving the 4-vector invariant. This phase 
does not appear in the integer spin representations, as Wigner built them, out of the 
two 4-vectors p and q. 

In order to show this explicitly let us switch from the set of variables q, ii, 6, f to 
a new set of independent variables which includes the vector p as well as a spacelike 
4-vector q. 

Let us take for q the vector: 

which satisfies 

(3.25) 

(3.26) 

Because of the constraints (3.26) the number of degrees of freedom that q adds is only 
two, say ql and q 3 .  A convenient set of independent variables is the following: 

P, 91 , q 3  9 ( 77 ' 8, ( ii . a, (I,. 
Here we have introduced the new variables ( q  * 5) and ( f  f ) ,  which may be removed 
by the 6 functions that appear in (3.24). Further: 

(3.27) 

is the extra parameter that we get compared with Wigner's approach. 

measure: 
One can check that these new variables are independent and lead to a new integration 

(3.28) 

where J is the Jacobian of the transformation. 
In order to understand the meaning of the parameter (I, and, in particular, why it 

is needed in the spinorial case, consider the fact that we can obviously change q by 
a phase (I, and 5 by a phase cp without affecting p and q ;  but in order to leave 17. 6 
and f f unchanged we must have (I, = -cp. Therefore there is only one extra degree 
of freedom in the space of the spinors with respect to the space of the 4-vectors p and q. 

Including the half-integer spin representations corresponds, from the point of view 
of the group, to going from the Lorentz group to its double cover SL(2, C). Accord- 
ingly, we can give a geometrical interpretation of the covering homomorphism by 
means of the parameter (I,. 

The geometrical description of the Lorentz group, for massive (integer spin) rep- 
resentations, is that of a hyperboloid (the massive orbit) with a 2-sphere attached to 
each point. The sphere represents the rotation group, leaving a fixed point on the 
hyperboloid stable, in the space of functions of p and q. The eigenfunctions of W 2  
corresponding to a fixed eigenvalue can be labelled to give the number of degrees of 
freedom of a fixed integer spin particle. 

dq  dij  d 5  dF=  d3p d ( ~  * 5) d(fj  f )  dqi dq, dlLlJl 
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By including the parameter $, we are adding a circle to each point of the sphere 
on the mass hyperboloid. To see how this affects the representation let us calculate 
W2. We shall consider that part of W' which involves $. If we make the calculation 
in the rest frame, p = (m, 0, 0, 0), we need to know only the transformation of $ under 
SU(2). It is possible to show, using the definition (3.27), that the (skew-Hermitian) 
generators of rotations S, ,  SJ, S, ,  in the space of functions of q l ,  q 3 ,  II/ restricted to 
$ are 

(3.29) 

wheret 

Since W2 is an invariant we can consider the frame in which the component q 2  of the 
spinor 7 vanishes, and still p = ( M, 0, 0,O). In this case S, and S,  vanish and we find 

The eigenfunctions of the operator S with eigenvalue s are 

f($) = e x p ( i W )  

(3.30) 

(3.31) 

where 2s has to be an integer because of the definition of $. We see therefore that 
the introduction of $ allows us to add half-integer spin representations to the integer 
spin ones defined by Wigner. We also get the usual integer spin representations 
corresponding to integer values of s in (3.31), but for a fixed s we get different, although 
equivalent, representations, as we shall discuss later. 

To investigate on the content of our representation let us go back to the space of 
p,  7, &I, defined by equations (3.21)-(3.24). In the space the calculation of W2 is 
easier since, having explicit expressions in p ,  we may calculate in the rest frame. We 
thus get 

w*= m2[S(S+1)+ V ]  (3.32) 

where 

and 

(3.33) 

(3.34) 

t The algebra of the operators (3.29) does not close because we are not considering the transformations of 

$ W e  identify 7 with p and 6 with [, whenever this does not cause confusion. 
q1 and q 3 .  



Relativistic wavefunctions on spinor spaces 3601 

Both operators S and V are explicitly invariant and we now show that both are 
Hermitian. In order to check this, one can just check the hermiticity of S, since W2 
is Hermitian by definition. If one works with the variables p ,  7, 5, one has to rewrite 
the conjugate of the spinors in terms of these variables in order to find what the adjoint 
of S is. A better procedure is to write the expression of S in the space of variables 7, 
5, fj, f, since in this space one gets 

(3.35) 

which is explicitly Hermitian?'. Therefore we have proved that both operators S and 
V are indeed Hermitian. 

The eigenfunctions of W2 are in general difficult to analyse. Two particular 
simplifications, however, enable us to obtain explicit solutions (including those of 
Wigner). We now restrict our attention to two subspaces of our Hilbert space, on 
which either one of the operators V and S is a null operator. 

(i) Let us consider the subspace of functions of the variables p ,  17, 5 which do not 
depend on 5. This is a particular case of functions of our carrier space which satisfy 
the relativistic invariant equation V f =  0: 

(3.36) 

The eigenfunctions of S (and hence of W 2  for the case of vanishing V )  are 
homogeneous polynomials in 7 and 5. If they do not depend on (-and analogously 
if they did not depend on q-we get 

s=o f ( P ,  7 1 9 5 )  = d P )  
f ( p ,  7, @ A ( p ) V A  

S = l  f (p ,  7, ~ ) = , Y A B ( P ) T ~ V ~  ,YAB symmetric in A and B etc. 

The integer spin representations obtained by Wigner on the space of functions of 
p and q are not included in this case. We shall examine them now. 

(ii) Let us consider the subspace of functions of the variables p ,  ~ , 5  which depend 
only on p and q, where q is the vector (3.25). In order to write q explicitly in terms 
of the variables p ,  7, 6, we use equations (3.20) and find that 

(3.37) 

The operator S identically vanishes when acting on q because the operators 7 - a/aT 
and 5. a l a e  separately vanish on q. In fact 

and analogously for 5 ala,$'. 

(3.38) 

t The space of 8, 6, 6, is much easier to work with for what concerns the reality and invariance of the 
integration measure and the hermiticity of the operators. In this respect it is the most natural space for the 
representations of SL(2, C) acting on a space of complex-valued functions. 
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Therefore the action of the operator W 2  on the functions defined only on the 
variables p and q is just the action of the operator V. Since V can also be written in 
the following way: 

we can use ( 3 . 3 8 )  and the analogue for 5 -  ala.$, and write 

Let us consider the action of the operator V on the polynomials in q :  

i = l  j>z k f i.k f j 

(3.39) 

(3.40) 

(3.41) 

where g,” is the Minkowski metric tensor. 
We consider functions f Y I , , . , , ( (  p ) q ” l .  . .q”? satisfying 

f y I . . . y  s (  p ” l p ” ~  - m2g”iui) = 0. 

These functions can also be considered transverse to p ,  since q is transverse (see ( 3 . 3 7 ) ) .  
The new condition then implies that they also be traceless. 

We thus find the same result as in the integer spin case, that the eigenfunctions of 
W 2  with eigenvalue s(s + 1 )  are functions of p times a polynomial in q of order s: 

s=o f ( P ,  4 )  = f ( p )  

S = l  f(P9 4) = f p ( P ) @  f , ( P ) P @  = 0 

s = 2  f ( P ,  9 )  =f ,Y(P)qPqY f ,”(P)P” = 0 fFP(P)  = 0 etc. 

These are the functions found by Wigner. 
As we already mentioned before, we get more than one realisation of the representa- 

tion corresponding to a fixed S, as explicitly shown in cases (i)  and (ii) above for 
S = 1. We can easily make an analogy with the covariant representations, namely the 
representation U D  having, as carrier space, the space of functions of p taking values 
in the carrier space of the representation D of SL(2, C). The integer spin representation 
studied by Wigner correspond to the representations U D “ “ ;  the representations we 
add, through the parameter 4, correspond to the representations UD’’’”, with 1, m, n 
integer or half-integer. The representations UD”’” and UD””’ are equivalent whenever 
2n = l + m .  
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For S = 1 the representation found in case (i)  corresponds to the representation 
and the one found in case (ii) to the UD'". The representations UD"O and UD*" 

are equivalent since both correspond to the representation induced by D' of SU(2). 
Notice that the equivalence of our representations, in the case S = 1 ,  is quite obvious 
if we write q explicitly in terms of 77 and 5, using (3.37). In fact 

uD',' 

(3.42) 

where K = ~ ( P )  is symmetric in C and B just like x A E  in case (i). The equivalence of 
the representations can be easily shown through the correspondence between K and x. 

4. Massless case 

4.1. Integer helicity 

Again we will begin by reviewing Wigner's technique for describing the integer helicity 
massless representations before extending it to include half-integer helicities. In 
particular, Wigner focuses [ 51 his attention on the infinite spin representations, which 
do not correspond to states of particles having a fixed integer helicity, since the 
eigenvalue of the angular momentum operator can extend to infinity. These representa- 
tions, in fact, once restricted to the little group, are not one-dimensional unitary 
representations, as in the case of the representations of fixed (finite) helicity, but 
infinite-dimensional unitary representations. 

The values of the invariant operators P 2  and W 2 ,  in an infinite spin representation 
are 0 and E', respectively, for E # 0. Hence they are denoted as O(Z). In the case of 
the representations of finite helicity, these eigenvalues are instead both 0. 

In order to build the O(E) representation let us consider, as in the massive case, 
the space of complex-valued functions f( p ,  q )  depending on the momentum p and on 
another 4-vector q. We now impose the following constraints?: 

P 2 f ( P ,  4 )  = o  (4.1) 
P * qf( PI 9) = 0 

q 2 f ( p ,  9) = - f ( P ,  9). 
(4.2) 
(4.3) 

The Lorentz group acts on the space of such functions by transforming the two 4-vectors 
p and q. In order to find the helicity content of the representation, we calculate the 
Pauli-Lubanski 4-vector W. We find, as in the massive case, 

but, this time, W 2  has a simpler expression, since we get 

(4.4) 

One therefore obtains the O( E) representation through the equation: 

a 
aqg , ' j f (P,  s)=iP"--f(P, q ) = W p , q ) .  (4.6) 

t Because of these constraints, the measure with respect to which the function f is square integrable is 
formally written as d4qd4pS(p2)S(p .  q )  S ( q 2 + l ) .  
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In the rest frame, namely for p = ( p o ,  0, 0, p") ,  the constraints on p and q confine 
q to the surface of a cylinder, whose axis is along p .  Therefore f is constrained on 
the surface of a cylinder, moved around by a Lorentz transformation. An analogous 
analysis can be made for the finite helicity representations. 

4.2. Including half-integer helicity 

The massless representations of SL(2, C)  on the space of functions of spinors are 
extremely simple and make one really appreciate the advantage of working on such 
spaces. 

We consider complex-valued functions cp of just one spinor 77 and its complex 
conjugate f .  

Since (fav) '  = 0, we regard p = (fq) as 4-momentum. 
We define the PoincarC group action on cp, corresponding to a translation by a and 

a SL(2, C)  transformation A, is given by 

U , , , , C P ( ~ ,  11) = exp(ia ~ v ) v ( ~ - ' q ,  A-'?). (4.7) 

We introduce the scalar product: 

(9, *) = d v  d f  @(v, f I*(% 75). (4.8) 

Again the Hilbert space of functions cp is taken to consist of those functions cp such that 

(CP, Q ) < c D .  

One may verify that the representation U defined by (4.7) is a unitary representation 
of the PoincarC group. 

Since no invariant can be made out of 7 and f we cannot impose any constraint. 
In the frame p = (1,0,0,1) we have 

(4.9) 

where $ is a free parameter. Because of (4.9) the four components of p are not 
independent functions of v and f .  Hence we cannot transform the measure d v  dfj 
into the measure d4p. We can however define, as for the massive case, 

f ' -  
~ l ,  =tan-' i - 

,ti'+?' 
(4.10) 

and find that the Jacobian of the transformation from the space of 7, f to the space 
of p (3-vector) and IC, does not vanish. We get, in fact 

1 
d v  df  =- d3p d+. 

21Pl 
(4.11) 

On the RHS of (4.11) we find precisely the invariant measure on the light cone times 
the differential of the parameter i,b. 

In the frame p=(l ,O,O,  1) (and so 7 given by (4.9)) the SL(2, C )  action on + 
reduces to a rotation S, about the z axis. This rotation is also an element of the 
stability group of p .  
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In the massless case W 2  is the sum of the squares of the two translation generators 
of the little group, calculated in the frame p = (1, 0, 0, 1). A straightforward evaluation 
of these generators shows that W 2  = 0 in our representation. Further 

1 "  s =-- 
2 d lL  

(4.12) 

assumes the meaning of helicity operator (for the expression of Sz see 0 3.2), with 
eigenfunctions 

f(p,  $1 = d p )  exp(i2slL) 2s=O, 1,2,. . .  . (4.13) 

If we consider the geometrical interpretation of the massless representations, as 
we have done in the massive case, we see that there is no difference here between the 
integer and half-integer representations. In both cases we just need an extra parameter, 
representing the rotations around the z axis, to get the helicity states. This should 
cause no surprise: the number of degrees of freedom for a massless particle is 1, no 
matter what its helicity is. Analogous to the massive case where the little group acted 
on a 2-sphere we now consider action on a cylinder whose axis lies along the momentum 
p. The only symmetry which counts, though, is the rotation of the cylinder around 
the z axis, since the translations by a vector proportional to p are to be gauged out 
because of unitarity (they would lead to null norm vectors in the Hilbert space). In 
our representations we just count the minimal number of parameters needed in order 
to describe a massless particle and no gauge condition has to be imposed. 

Going back to the space of 7) and i j ,  which is a most natural space to work with 
in the massless case, we can calculate W 2  directly and we find, in the framep = (1 ,0,0,1)  

2 3  

a7) 
w2 = ss where s=q 7. 

Since in this frame v 2 = 0 ,  it follows that W 2 = 0 .  The expression for S, is 

(4.14) 

(4.15) 

Hence the helicity states obviously are 

The case in which the carrier space of the representation is a space of functions 
of 7) and i j  is, as we have shown, the simplest and the most natural to work with, in 
order to get the finite helicity representations of the Poincark group. We could have 
worked, however, with functions of q, t ,  i j ,  as well, in analogy with the massive case, 
and impose the constraint 7) * 6 = 0. We would have found, in particular, the infinite 
spin representations described by Wigner. We showed only the present formulation 
because of its simplicity and elegance. 
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5. Imaginary mass case 

5.1. Integer spin 

We now examine the case in which p 2  = -m2, for real m ;  as customary we call this 
the imaginary mass case. We will also speak of spin in the present case, even though 
this is not quite appropriate. The operator W 2 ,  in fact, is no longer related to the 
angular momentum generators, as in the massive case, but rather to one generator of 
rotations and two generators of boosts. Nevertheless the eigenvalues of W 2  are still 
of the form - m 2 [ s ( s  + l ) ]  and we give such s the name of spin. 

We consider the representation of the Poincark group acting on the space of 
complex-valued functions f ( p ,  q )  depending on the momentum p and on another 
translationally invariant 4-vector q, satisfying the following constraints: 

(PI+ “ ) f ( P ,  9 )  = o  ( 5 . 1 )  

p ‘ s f ( P , q ) = o  (5 .2 )  

S 2 f ( P ,  4 )  =o. (5 .3)  

Notice that in the present case we can have a vector q satisfying both p . q = 0 and 
q 2 = 0 ,  which turns out to be a very convenient choice. In the massive case this was 
not possible, since a vector orthogonal to a timelike vector cannot be light-like. 

The Lorentz group acts on the space of such functions by transforming, in the 
usual way, the two 4-vectors p and q. The inner product (f, g)  is given by 

The calculations of the invariant W 2  using equations (3.5) and (3.6) is straightfor- 
ward and the result is simpler than in the massive case because q2 = 0. One finds, from 
(5.1)-(5.3), 

( 5 . 5 )  

The eigenfunctions of the operator W’ are the eigenfunctions of the operator S. 

For a given eigenvalue of S we thus get 
Hence they are polynomials in q times a function of p .  

These eigenfunctions are not in the Hilbert space carrying our representation: they 
are not normalisable in the inner product (5.4), since the integration is over the 
non-compact manifold spanned by q. This means that the values indicated above are 
in the continuous spectrum. There is no eigenfunction in the Hilbert space but there 
exist approximate eigenfunctionsfsuch that, given E > 0, / /  Vf- s(s  + l)fll< E l l f l l .  Such 
approximate eigenfunctions can be considered like the wavepackets, which are approxi- 
mate eigenfunctions of the momentum operator in configuration space. 
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5.2. Including half-integer spin 

We now include half-integer spin? representations for the imaginary mass case. We 
consider complex-valued functions cp of two spinors 7, 5 and their complex conjugate 
3, subject to the following constraints: 

v . ( = m  
f j -  [ = m a  

From (5.6) and (2.10) it follows that 

- 

We therefore regard as 4-momentum the vector: 

iiuv - cut 
2 '  P =  

When 7) and 5, in a particular frame, assume the values 

then p = (0, O,O, m ) ,  due to the constraint (5.6).  

a SL(2, C )  transformation A, by 
We define the PoincarC group action on 9, corresponding to a translation by a and 

(5.10) 

We introduce the scalar product: 

We define the Hilbert space of functions cp such that 

Again the representation U defined by (5.10) is a unitary representation of the PoincarC 
group. 

In order to classify the representation we calculate the invariant W z .  We proceed 
the same way as we did in the massive case. First, we make the following change of 
variables: 

(5.12) 
We then calculate W 2  in the frame in which p = ( O , O , O ,  m). In this rest frame, the 
three non-vanishing components of the Pauli-Lubanski 4-vector W are 

( c p ,  P) < 00. 

779 ii, 5, f + P ,  735. 

(5.13) 

t Namely half-integer s such that the eigenvalue of the operator W 2  is - m z  [ s (s+l ) ] .  
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Notice that, in the frame in which p = (O,O, 0, m ) ,  the Pauli-Lubanski 4-vector is 
written in terms of two boost generators (in the x and y directions) and the generator 
of the rotations around the z axis. We can therefore easily compare the Pauli-Lubanski 
vectors in the present case and in the massive case. It turns out that, in terms of the 
components appearing in equations (5.13), the Pauli-Lubanski vector in the imaginary 
mass case is W = ( p ,  W’, W2,0) while in the massive case it is W =  
(0, i W2, -i W’, WO). We thus find that W2, in the two cases, differs only by a sign. 
Therefore 

W 2 = - m 2 [ S ( S + 1 ) +  VI (5.14) 

where 

and 

(5.15) 

(5.16) 

Both operators S and V are explicitly invariant and both are Hermitian, as we have 
shown in the massive case. Proceeding as we did in the massive case and restricting 
our attention to subspaces of our Hilbert space, for which either one of the operators 
V and S is a null operator, we find simple forms for the eigenfunctions of W 2 .  

( a )  First, consider the subspace of functions of the variables p ,  7, 5 which do not 
depend on 6. The eigenfunctions of Wz are therefore homogeneous polynomials in 
7. Hence we obtain 

s=o f( PI 7 7 9 6 )  = $4 P )  

S = ’  2 f ( p ,  7, 5 )  = @ A ( P ) T A  

S = l  f ( p ,  7, 6) ’XAB(P)TA?7B xAB symmetric in A and B etc. 

The integer spin representations that we found in the preceding subsection, which 
act on the space of functions of p and q only, are not included in this case. We shall 
examine them now. 

( b )  Let us consider the subspace of functions of the variables p ,  7, 5 which depend 
only on p and q, where q is the vector: 

q = fcii + a 4 7  + 6) (5.17) 

which satisfies both 

p . q = o  and qz = 0. (5.18) 

In order to write q explicitly in terms of the variables p ,  7, 5, we use the following 
equation: 

P*‘pAB(v + ‘$1” = -(7) ’ 5 ) ( f l +  {)A. (5.19) 

We thus find 

(5.20) 
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The operator S vanishes identically when acting on q, even though the operators 
77 a/aT and 5. a/ag do not separately vanish on q. Therefore the action of the operator 
W 2  on functions depending only on the variables p and q is given just by the action 
of V. Moreover, since V can also be written in the following way: 

and since S vanishes, when acting on functions of q only, we get 

(5.21) 

(5.22) 

Let us now consider the action of the operator V on polynomials in q. The 
calculation is easier if we make the following change of variables: 

77, t+ 0 = 17 +5, P = 77 -5. (5.23) 

We have that 

a . p = -  77‘ 5 
a a  a a  

- - - - - - ; ia.P=--  
aaA ap aTA a t A  17 

(5.24) 

From (5.24) it follows that 

a 
-(a* p y q U ’ .  . . q”.=O 
aP A 

and 

(5.25) 

(5.26) 

= (2+2(s -  l ) + ( s -  1)aA ”) q ” ’ . .  . qUs 
a a A  

= s(s+ 1 ) q ” t . .  . q”.. 
The eigenfunctions of W 2  with eigenvalue s ( s + l )  are functions of p times a 

polynomiai in q of order s: 

s=o f( P,  4 )  =f( P )  
S = l  f( P14) =f,( P h C I  
s = 2  f ( P ,  4 )  = f F Y ( P ) q F q y  etc. 

We thus find the same result as in the integer spin case. 
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6. Conclusions 

We have found here a uniform description giving wavefunctions for free particles 
belonging to all irreducible representations of the covering to the Poincari group. 

The usual description in terms of spinor or tensor fields for the massive case can 
be readily recovered from our formalism by considering functions which are finite 
polynomials in a subset of our variables. This suggests that an alternative approach 
to ours could be followed using Grassmann variables [8]. We are currently investigating 
such an approach. 

For the massless case, except for simple helicity states, there is no tensor formulation. 
By contrast, our uniform approach works just as easily for the massless as well as for 
the massive case. Similarly, aside from scalar tachyons, there is no spinor field 
representation for tachyons?. 

An important question to investigate is how to construct interactions in this formal- 
ism. Such a discussion is essential if one wishes to argue seriously about the existence 
of non-scalar tachyons. 
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